Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summer circulation and moisture patterns in the Southeast United States are controlled by the position of the North Atlantic subtropical high. In a warming climate, the subtropical high is projected to strengthen and expand west, but there remains uncertainty regarding its variability and linkages to natural drivers. Here, we use a tree-ring network across the Southeast United States to reconstruct the relative intensity of the pressure gradient across the subtropical high’s western flank over the past 870 years. Variations in the flank’s position and the pressure gradient have been a major driver of the hydroclimate—including creating a Southeast-Caribbean moisture dipole—since 1140 CE. We document a significant increase in flank positional variability since 1900 CE, with westward migrations becoming more extreme. Likewise, major volcanic eruptions cause a multiyear period of westward positioning, leading to distinct regional moisture gradients. Our record highlights important changes in flank behavior, which has important implications for water resource management in a warming world.more » « less
-
Landau’s Fermi-liquid (FL) theory has been successful at the phenomenological description of the normal phase of many different Fermi systems. Using a dilute atomic Fermi fluid with tunable interactions, we investigate the microscopic basis of Landau’s theory with a system describable from first principles. We study transport properties of an interacting Fermi gas by measuring its density response to a periodic external perturbation. In an ideal Fermi gas, we measure for the first time the celebrated Lindhard function. As the system is brought from the collisionless to the hydrodynamic regime, we observe the emergence of sound and find that the experimental observations are quantitatively understood with a first-principle transport equation for the FL. When the system is more strongly interacting, we find deviations from such predictions. Finally, we measure the momentum-space shape of the quasiparticle excitations and see how it evolves from the collisionless to the collisional regime. Our study establishes this system as a clean platform for studying Landau’s theory of the FL and paves the way for extending the theory to more exotic conditions, such as nonlinear dynamics and FLs with strong correlations in versatile settings. Published by the American Physical Society2025more » « less
-
Abstract Ice‐nucleating particles (INPs) play a key role in ice formation and cloud microphysics and thus significantly impact the water cycle and the climate. However, our understanding of atmospheric INPs, particularly their sources, emissions, and spatiotemporal variability, is incomplete. While the enhancement of atmospheric INP concentrations with rainfall has been previously shown, a mechanistic understanding of the process is lacking. Here, we link detailed precipitation observations with near‐surface atmospheric INP concentrations at a semiarid grassland site in Colorado. Considering the during‐precipitation air samples, INP concentrations positively correlate with cumulative rainfall kinetic energy and amount, suggesting that INP aerosolization is induced by raindrop and hailstone impact. By additionally analyzing the INP content of precipitation water, terrestrial source samples, and heat‐treated samples, we demonstrate that local plants are the most plausible source of rain‐induced INPs during a precipitation event. Should INPs aerosolized by precipitation rise to cloud height, they could influence cloud ice fraction and initiate precipitation resulting in an aerosol‐cloud‐precipitation feedback.more » « less
-
Abstract Over recent decades, the southeastern United States (Southeast) has become increasingly well represented by the terrestrial climate proxy record. However, while the paleo proxy records capture the region's hydroclimatic history over the last several centuries, the understanding of near surface air temperature variability is confined to the comparatively shorter observational period (1895‐present). Here, we detail the application of blue intensity (BI) methods on a network of tree‐ring collections and examine their utility for producing robust paleotemperature estimates. Results indicate that maximum latewood BI (LWBI) chronologies exhibit positive and temporally stable correlations (r = 0.28–0.54,p < 0.01) with summer maximum temperatures. As such, we use a network of LWBI chronologies to reconstruct August‐September average maximum temperatures for the Southeast spanning the period 1760–2010 CE. Our work demonstrates the utility of applying novel dendrochronological techniques to improve the understanding of the multi‐centennial temperature history of the Southeast.more » « less
-
Abstract Contextualizing current increases in Northern Hemisphere temperatures is precluded by the short instrumental record of the pastca.120 years and the dearth of temperature-sensitive proxy records, particularly at lower latitudes south of <50 °N. We develop a network of 29 blue intensity chronologies derived from tree rings ofTsuga canadensis(L.) Carrière andPicea rubensSarg. trees distributed across the Mid-Atlantic and Northeast USA (MANE)—a region underrepresented by multi-centennial temperature records. We use this network to reconstruct mean March-September air temperatures back to 1461 CE based on a model that explains 62% of the instrumental temperature variance from 1901−1976 CE. Since 1998 CE, MANE summer temperatures are consistently the warmest within the context of the past 561 years exceeding the 1951−1980 mean of +1.3 °C. Cool summers across MANE were frequently volcanically forced, with significant (p<0.05) temperature departures associated with 80% of the largest tropical (n=13) and extratropical (n=15) eruptions since 1461 CE. Yet, we find that more of the identified cool events in the record were likely unforced by volcanism and either related to stochastic variability or atmospheric circulation via significant associations (p<0.05) to regional, coastal sea-surface temperatures, 500-hpa geopotential height, and 300-hpa meridional and zonal wind vectors. Expanding the MANE network to the west and south and combining it with existing temperature-sensitive proxies across North America is an important next step toward producing a gridded temperature reconstruction field for North America.more » « less
-
Abstract The mosquito microbiome is critical for host development and plays a major role in many aspects of mosquito biology. While the microbiome is commonly dominated by a small number of genera, there is considerable variation in composition among mosquito species, life stages, and geography. How the host controls and is affected by this variation is unclear. Using microbiome transplant experiments, we asked whether there were differences in transcriptional responses when mosquitoes of different species were used as microbiome donors. We used microbiomes from four different donor species spanning the phylogenetic breadth of the Culicidae, collected either from the laboratory or the field. We found that when recipients received a microbiome from a donor reared in the laboratory, the response was remarkably similar regardless of donor species. However, when the donor had been collected from the field, many more genes were differentially expressed. We also found that while the transplant procedure did have some effect on the host transcriptome, this is likely to have had a limited effect on mosquito fitness. Overall, our results highlight the possibility that variation in mosquito microbiome communities is associated with variability in host–microbiome interactions and further demonstrate the utility of the microbiome transplantation technique for investigating host–microbe interactions in mosquitoes.more » « less
An official website of the United States government
